8 research outputs found

    Superfluidity and magnetism in multicomponent ultracold fermions

    Get PDF
    We study the interplay between superfluidity and magnetism in a multicomponent gas of ultracold fermions. Ward-Takahashi identities constrain possible mean-field states describing order parameters for both pairing and magnetization. The structure of global phase diagrams arises from competition among these states as functions of anisotropies in chemical potential, density, or interactions. They exhibit first and second order phase transition as well as multicritical points, metastability regions, and phase separation. We comment on experimental signatures in ultracold atoms.Comment: 4 pages, 3 figure

    Symmetry analysis of crystalline spin textures in dipolar spinor condensates

    Full text link
    We study periodic crystalline spin textures in spinor condensates with dipolar interactions via a systematic symmetry analysis of the low-energy effective theory. By considering symmetry operations which combine real and spin space operations, we classify symmetry groups consistent with non-trivial experimental and theoretical constraints. Minimizing the energy within each symmetry class allows us to explore possible ground states.Comment: 19 pages, 4 figure

    Neutral skyrmion configurations in the low-energy effective theory of spinor condensate ferromagnets

    Full text link
    We study the low-energy effective theory of spinor condensate ferromagnets for the superfluid velocity and magnetization degrees of freedom. This effective theory describes the competition between spin stiffness and a long-ranged interaction between skyrmions, topological objects familiar from the theory of ordinary ferromagnets. We find exact solutions to the non-linear equations of motion describing neutral configurations of skyrmions and anti-skyrmions. These analytical solutions provide a simple physical picture for the origin of crystalline magnetic order in spinor condensate ferromagnets with dipolar interactions. We also point out the connections to effective theories for quantum Hall ferromagnets.Comment: 13 pages, 7 figure

    Probing quantum and thermal noise in an interacting many-body system

    Full text link
    The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic

    Dynamical Instability of the X

    No full text
    corecore